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9. Appendix: Formal Results

Throughout the appendix we will use the notation (x)+ as shorthand for max{x, 0}. The two bidders

are denoted by i = {1, 2} and the two goods are denoted by j = {1, 2}. Bidder 1’s valuation of

object j will be denoted vj . Bidder 2’s valuation of object j will be denoted wj . We will calculate

expected profits from the point of view of bidder 1; therefore we let F̃ (w1, w2) denote bidder 1’s

subjective probability distribution over the valuations of bidder 2. We assume throughout that F̃ is

a continuous distribution with support [v, v̄]2. Further conditions on F̃ will be imposed as part of

the various proofs in subsequent sections.

In determining whether a SPaR strategy vector is a Nash equilibrium, a central role is played by

following function, the “expected gain to cooperative bidding”:

Γ(v1, v2) =

Z
(w1,w2)∈S

(v1 −R)− (v1 −w1)+ − (v2 −w2)+ dF̃ (w1, w2). (3)

To interpret this function, assume that when the outcome is coordinated, bidder 1 receives object

1 at the reserve price. Also assume that bidder 2 is following a SPaR strategy with a coordination

region S ⊆ [v, v̄]2. Then Γ(v1, v2) is the expected increased payoff to bidder 1 in switching from

competitive to cooperative bidding, given his valuations for the two goods.

The difference between the various kinds of equilibria described in the text is a difference in

the region of coordination; for instance when v1 > v2 the coordination region for bidder 2 under

a partially coordinated strategy with critical value C is {(w1, w2) ∈ [v, v̄]2 |w1 < min{C,w2}}. We

begin with a lemma stating basic facts about the function Γ:

Lemma 10. Suppose that S is a non-empty open set.

a) The function Γ is concave in (v1, v2). The function is strictly increasing in v1 for v1 less than

the supremum of w1 in S, and constant in v1 for v1 greater than the supremum of w1 in S. It is
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strictly decreasing in v2 for v2 greater than the infimum of w2 in S.

b) If in addition

R ≤ inf
(w1,w2)∈S

min{w1, w2},

then (i) Γ(R,R) = 0 and (ii) Γ(R+ ε, R+ ε) > 0 for ε positive and sufficiently small.

Proof. Part a) follows from the fact that the integrand in (3) is concave, increasing in v1 for

v1 < w1, constant in v1 for v1 > w1, decreasing in v2 for v2 > w2 and constant in v2 for v2 < w2.

Part b) (i) is immediate. For b) (ii) we have:

Γ(R+ ε, R+ ε) = ε

Z
(w1,w2)∈S

dF̃ (w1, w2)−
Z
(w1,w2)∈S
w1<R+ε

(R+ ε−w1) dF̃ (w1, w2)

−
Z
(w1,w2)∈S
w2<R+ε

(R+ ε−w2) dF̃ (w1, w2).

≥ ε
Z
(w1,w2)∈S

dF̃ (w1, w2)− ε
Z
(w1,w2)∈S
w1<R+ε

dF̃ (w1, w2)

−ε
Z
(w1,w2)∈S
w2<R+ε

dF̃ (w1, w2)

= ε(Pr{(w1, w2) ∈ S ∩w1 > R+ ε}− Pr{(w1, w2) ∈ S ∩w2 < R+ ε})

which is positive for ε positive and sufficiently small.

Until section 9.4, we assume that R ≤ v–that is, bidder 2 never places a valuation on either

object lower than the reserve price.

9.1. Proof of Theorem 3. For this theorem we assume that F̃ (w1, w2) = F (w1)F (w2). That

is, the valuations of each of the two objects are drawn independently from a continuous distribution

F on [v, v̄].

Suppose, without loss of generality, that v1 > v2. Then given his valuations, player 1 has four

strategies in the first period: to bid on both objects, to bid on the higher valued object only, to
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bid on the lower valued object only, or to bid on no objects. The last is obviously inferior, the

third is inferior to the second by an appeal to symmetry. Given that the other player is following

the partially coordinated strategy, bidding on both objects guarantees that the outcome will be

competitive. Bidding on only one object will yield that object at the reserve price if coordination

is achieved, otherwise it will lead to competition. Thus coordination will be achieved if w2 > w1

and C > w1, where C = v̄ in the case of complete coordination and v < C < v̄ in the case of partial

coordination.

In other words, the gain from bidding on on the higher valued object over bidding on both objects

is

Γ(v1, v2;C) ≡
ZZ

w2>w1
C>w1

[v1 −R− (v1 −w1)+ − (v2 −w2)+] dF (w1) dF (w2). (4)

(We will add the third argument to the function Γ when we wish to emphasize dependence on the

size of the coordination region.) If we can show that for all (v1, v2) such that v̄ ≥ v1 > v2 ≥ v, this

expression is non negative when C > v2, and non positive when v2 > C, we will have proved the

theorem. Lemma 10, part a) shows that Γ has the proper signs in the proper regions if and only if

either

Γ(v, v;C) ≥ 0 for all v in the interval (v,C) and Γ(C,C;C) = 0

or

Γ(v, v; v̄) ≥ 0 for all v in the interval (v, v̄) and C = v̄.

Since Γ(v, v;C) is concave in v, lemma 10, part b) shows that Γ(v, v;C) ≥ 0 for all v in the

interval (v,C) if and only if Γ(C,C;C) ≥ 0. Calcuation shows that

Γ(C,C;C) = −
Z C

v
F (v) dv + (C −R)F (C)

µ
1− 1

2
F (C)

¶
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We conclude that there exists a partially coordinated strategy with critical value C provided

Γ(C,C;C) ≥ 0 and C ≤ v̄,with at least one inequality strict. (5)

Note that Γ(v, v; v) is equal to 0. If, per hypothesis, either F 0(v) > 0 and F 00(v) is finite or R <

v, then Γ(v, v; v) is increasing (this is the only place where these hypothesized conditions are used

in the proof). Thus either Γ(C,C;C) ≥ 0 for all values of C in (v, v̄), in which case there is a fully

coordinated equilibrium, or there is an interior value of C which supports a partially coordinated

equilibrium.

Note that Γ(C,C) depends only on the particulars of the distribution below C. Thus once we

find a partially coordinated equilibrium we can make arbitrary changes to the distribution above C

and we will continue to have a partly coordinated equilibrium. Also note that C need not be unique:

while Γ(v, v;C) is concave in v, Γ(v, v; v) is not.

9.2. Proof of Theorem 2.

Corollary 11. If R ≤ v, then there is a fully coordinated Nash equilibrium if and only if the

distribution has an upper bound v̄ such that the mean valuation is greater than or equal to 1
2(v̄+R)

Proof. When C = v̄, condition (5) reduces to:Z v̄

v
v dF (v) ≥ 1

2
(v̄ +R). (6)

Theorem 12. Suppose the support of F (v) is [v, v̄], R ≤ v, the mean valuation is greater than

(v̄ +R)/2, and

lim sup
v→R+

F (v)

v −R <∞. (7)
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Then there exists a critical step size ε̄ > 0 such that for all step sizes smaller than ε̄, the discrete

version of the game has a fully coordinated Nash equilibrium.

Note that (7) holds automatically if R < v.

Proof. As ε approaches zero, the payoffs in the discrete version of the game approach the

payoffs of the continuous approximation. We will find a critical size such that for all pairs (v1, v2)

in [v, v̄]2, the errors in the estimated payoff are so small that the sign of the difference between

the expected payoff from the competitive defection and the payoff from the coordinated strategy

is unchanged by correcting for the error made by the continuous approximation. The proof would

be immediate were Γ(., .) uniformly bounded away from zero on [v, v̄]2. However, when R = v, the

costs of the defection approach zero as the v’s become small. Thus the comparison becomes more

delicate.

Without loss of generality, assume v1 ≥ v2. Then from lemma 10, we know that Γ(v1, v2) ≥

Γ(v1, v1) ≥ (v1−R)Γ(v̄, v̄)/(v̄−R) > 0. The next to last inequality follows from the concavity of Γ,

and the last inequality follows from the fact that by the hypothesis, condition (6) holds as a strict

inequality.

In any realization of (v1, v2) and opponent’s values (w1, w2) the realized payoff in the auction,

given a competitive deviation, differs from the continuous valuation by no more than min{ε, v1−R}

+min{ε, v2−R}. This claim is justified by the following considerations: The price that must be paid

to obtain an object differs by at most ε. Thus if the object is obtained in both the approximation

and the discrete game the difference in payoff is precisely the difference in price. Since the decision in

both games as to whether to obtain the object is voluntary (if too expensive, the bidder can always

say “no”), the only time that the decision will differ between the two versions of the game is when the
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player’s valuation differs from the opponent’s valuation by less than ε. Furthermore, when valuation

vj is less than ε + R, the payoff for object j will either be vj − R or 0 in the discrete version, and

somewhere in the interval [0, vj − R] in the continuous approximation. Finally, if an object is not

obtained in either version of the game, the error from the continuous approximation is zero.

Thus given (v1, v2), the absolute value of the error in the calculation of the expected payoff in the

competitive deviation is no more than F (v1 + ε)min{ε, v1 −R}+F (v2 + ε)min{ε, v2 −R}. Finally,

if the coordination succeeds, the error from the continuous approximation to that payoff is zero: the

payoff is v1 in either version of the game. Since there is a .5 probability of coordination, the absolute

value of the error in the calculation of Γ(v1, v2) is no more than half the error in the competitive

deviation. Since v1 > v2, the expected error in calculating Γ is bounded by F (v1+ε)min{ε, v1−R}.

Thus we need to find a critical value of ε̄ such that for all smaller, positive ε, and for all v1 > R,

F (v1 + ε)min{ε, v1 −R} < (v1 −R)Γ(v̄, v̄)
v̄ −R .

Define

h = sup
v∈(R,v̄]

F (v)

v −R ;

h is finite by the continuity of F and by (7). Then the requirement is satisfied by

ε̄ =
Γ(v̄, v̄)

2(v̄ −R)h.

For if v1 −R ≥ ε, then

F (v1 + ε)min{ε, v1 −R}
v1 −R =

F (v1 + ε)ε

v1 −R =

µ
v1 + ε−R
v1 −R

¶
F (v1 + ε)ε

v1 + ε−R ≤ 2hε

and if v1 −R < ε, then

F (v1 + ε)min{ε, v1 −R}
v1 −R = F (v1 + ε) ≤ F (R+ 2ε) ≤ 2hε
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and 2hε < 2hε̄ = Γ(v̄, v̄)/(v̄ −R).

The proof of Theorem 2 in the text then makes the extension from Nash equilibrium to subgame

perfect Nash equilibrium.

Generalization to Dependent Distributions (Proof of Theorem 4). When the distri-

bution of a player’s two valuations is the symmetric distribution F̃ (w1, w2) the expected gain to

competitive bidding is

Γ(v1, v2;C) =

ZZ
w2>w1
C>w1

(v1 − (v1 −w1)+ − (v2 −w2)+) dF̃ (w1, w2)

As before, a coordinated equilibrium exists if and only if Γ(v̄, v̄; v̄) ≥ 0. In this case

Γ(v̄, v̄; v̄) =

ZZ
w2>w1
v̄>w1

w1 dF̃ (w1, w2) +

ZZ
w2>w1
v̄>w2

−v̄ +w2 dF̃ (w1, w2)

= −v̄Pr{w2 > w1}+
ZZ
w2>w1

w1 dF̃ (w1, w2) +

ZZ
w2>w1

w2 dF̃ (w1, w2)

= − v̄
2
+

ZZ
w1 dF̃ (w1, w2)

(the last line exploits the symmetry between w1 and w2). In other words Γ(v̄, v̄; v̄) is positive as long

as the expectation of w1 is greater than one half of v̄.

9.3. Proof of Theorem 5. Let H be the compact space of concave, non-decreasing functions

from [R, v̄] to itself.

Lemma 13. Suppose that player 2 is following a partially coordinated strategy. Then there exists

a function h in H such that player 1 has a best response which is a partially coordinated strategy

where the coordination region is of the form

{(v1, v2) ∈ [v, v̄]2 |v2 ≤ h(v1)}
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Proof. By lemma 10, player 1’s coordination region is a convex set in [v, v̄]2 whose boundary

is a non-decreasing, concave function.

Obviously the lemma holds for player 2 as well, with the subscripts on the goods swapped. The

shaded areas in Figures 3a and b are typical coordination regions for players 1 and 2 respectively,

with upper boundaries h1 and h2. We will identify each h in H with the corresponding partially

coordinated strategy. We would therefore like to apply the Brouwer fixed point theorem to the set

of strategy profiles in H ×H. Unfortunately the competitive strategy profile is a member of this

set, since the competitive strategy corresponds to the function h ≡ v. Thus we must find a closed

subset of the form H1 ×H2, not containing competitive strategies and such that a best response to

strategies in H1 is in H2 and vice versa. We will do this differently depending on whether R is less

than or equal to v.

We begin with the case where R = v. We define a family of subsets K(C) as follows:

K(C) = {h ∈H|h(v̄) ≥ C}

Our goal is to find C1 and C2, both greater than v, such that when player 2’s strategies is in

K(C2) player 1’s best response is in K(C1) and vice versa.

Lemma 14. Suppose that R = v and C1 and C2 are both greater than v. Define

C0 =
C1(C2 − v) + v(v̄ − v)
(C2 − v) + (v̄ − v) . (8)

If for all x in the interval [C0, C1] the following condition holds

(x− v)F̃ (x, v̄)−
Z x

v
F̃ (w1, v̄) dw1 −

Z C1

v
F̃ (x,w2) dw2 > 0 (9)

then for any of player 2’s strategies in K(C2), player 1’s best response is in K(C1).
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Proof. Let the function h2 inK(C2) denote player 2’s strategy. Showing that the best response

is in K(C1) is equivalent to showing that (v̄, C1) is in player 1’s coordinating region, that is to say,

that Γ(v̄, C1) is non-negative. Now

Γ(v̄, C1) =

Z v̄

w2=v

Z h2(w2)

w1=v
w1 −R− (C1 −w2)+ dF̃ (w1, w2). (10)

Denote the expression on the left side of formula (9) by Z(x). It can be rewritten as

Z(x) =
Z v̄

w2=v

Z x

w1=v
w1 −R− (C1 −w2)+ dF̃ (w1, w2)

Thus we have

Γ(v̄, C1)− Z(x) =
Z v̄

w2=v

Z h2(w2)

w1=x
w1 −R− (C1 −w2)+ dF̃ (w1, w2) (11)

Note that the common integrand is negative if and only if w1+w2 < R+C1. Suppose some x in the

interval [v, v̄] satisfies the following condition:

h2(R+C1 − x) = x (12)

If w2 > R+C1−x, then h2(w2) > x and the integrand is positive for all w1 in the interval [x, h2(w2)].

On the other hand if w2 < R + C1 − x, then h2(w2) < x and the integrand is negative for all w1

in the interval [h2(w2), x]. In other words, if x satisfies condition (12), then the expression in (11)

is positive and Γ(v̄, C1) > Z(x). Geometrically, condition (12) states that x is the value of h2 at its

intersection with the locus w1 + w2 = R+ C1. Moreover, if x satisfies (12) then x lies in the range

[C0, C1] (because the graph of h2 lies between the line w1 = R and the line segment from (R,R) to

the point (v̄, C2), and the values C1, C0 respectively are the w1 values of intersections with the locus

w1 + w2 = R + C1; see figure 4). Thus if there is an intersection and if Γ(v̄, C1) is negative, then
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Z(x) must be negative at the intersection value of x, violating the assumption of the lemma. On the

other hand if there is no x in the interval [R, v̄] which satisfies condition (12) then it must be that

h2(v̄) < R+C1 − v̄.

In this case, set x equal to R+ C1 − v̄. Again it can be shown that x lies in the range [C0, C1] and

since w1+w2 < R+C1 for all (w1, w2) in the open rectangle (v, v̄)× (v, x), the integrand is negative

throughout this range and Z(R+C1− v̄) is negative, again violating the assumption of the lemma.

For any distribution it can be verified whether the conditions of the above lemma are satisfied

for some C1 and C2. The rest of this section considers the case where the valuations of the two goods

are independent, allowing us to describe simple sufficient conditions. Let player i’s joint distribution

over the two valuations be Fi1(w1)Fi2(w2).

Lemma 15. Let R = v. Suppose both players’ marginal distributions have densities fij which are

twice differentiable in the neighborhood of the lower end of the support of the valuations. If v = 0,

suppose further that

f11(0)f22(0) < v̄
−2. (13)

Then there exist C1, C2 > 0 such that for any of player 2’s strategies in K(C2), player 1’s best

response is in K(C1) and vice versa.

Proof. In the case of independence, formula (9) reduces to

Z(x) =

Z C0

v
(w1 −R) dF21(w1)− F21(x)

Z C2

v
F22(w2) dw2 > 0.

Since the expression is increasing in x whenever it is non negative, it is sufficient that it hold for

x = C0. Recalling that C0 is also a function of C1 and C2, we search for a pair C1, C2 satisfying this
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inequality. Let C2 → v and let C1 = kC2. Then it suffices that

lim
C2→v

R C0
v w1 dF21(w1)

F21(C0)
R C0
v F22(w2) dw2

> 1

Both numerator and denominator, as well as their first derivatives, approach 0 as C2 approaches

v. The second derivative of the denominator is also zero. If v > 0, then let k = 1. The second

derivative of the numerator is positive at v and we are done. On the other hand if v = 0 the

second derivative of the numerator is also zero. Evaluating the third derivatives of numerator and

denominator at C2 = v = 0 yields the inequality

1

2f22(0)

d2x

dC2
(0) =

k

v̄f22(0)
> 1

A similar analysis from the point of view of player 2 yields the inequality

1/k

v̄f11(0)
> 1

There exists a k such that the two inequalities are simultaneously satisfied provided inequality (13)

is satisfied.

In other words, when R = v, minimal conditions imply that partial coordination by one bidder

induces partial coordination by the other.

For the case R < v, we jump immediately to the assumption of independent distributions. We

define a family of subsets J(C) ⊂H as follows

J(C) = {h ∈H|h(v) ≥ C}

Let C∗j be defined by the following relationship:

Z C∗j

v
Fjj(w) dw = v −R
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Lemma 16. Suppose R < v. When bidder 2’s uses a partially coordinated strategy, bidder 1’s best

response is in J(C∗2), and vice versa.

Proof. Let h2 be bidder 2’s strategy. It suffices to demonstrate that Γ(v,C∗2) ≥ 0. Now

Γ (v, C∗2) =
Z v̄

w2=v

Z h2(w2)

w1=v
v −R− (C∗2 −w2)+ dF22(w2)dF21(w1). (14)

Define

Y (x) =

Z v̄

w2=v

Z x

w1=v
v −R− (C∗2 −w2)+ dF22(w2)dF21(w1). (15)

The common integrand in (14) and (15) is negative if and only if w2 < C∗2 + R − v. Thus if

h2(C
∗
2 +R− v) = x, then Γ (v,C∗2) > Y (x) . But

Y (x) = F21(x)[(v −R)−
Z C∗2

w2=v
(C∗2 −w2) dF22(w2)] = 0.

Therefore Γ (v, C∗2) is positive.

Now we have subsets of H×H which exclude the competitive strategy. The final step is to verify

continuity.

Lemma 17. Suppose that the density of the distribution F̃ for player 2 exists and is bounded away

from zero in a neighborhood of the point (v, v). Then player 1’s best response to a strategy h of

player 2 is a uniformly continuous function of h(.) in K(C) or J(C), C > 0.

Proof. We now write Γ(v1, v2;h) to emphasize the function’s dependence on the opponent’s

strategy h. Given the function h let the function g(.;h) be the best response of player 1. If

Γ(v1, v;h) < 0, then g (v1;h) = v; if Γ(v1, v̄;h) > 0, then g (v1;h) = v̄. Otherwise, g is implic-

itly defined by Γ(v1, g (v1;h) ;h) = 0. Since the integrand in the formula (10) for Γ is uniformly

bounded, Γ is uniformly continuous in h.We must show that for every ε > 0 there exists δ such that
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if |Γ(v1, v2; a) − Γ(v1, v2; b)| ≤ δ for all (v1, v2) ∈ [v, v̄]2 then |g(v1; a) − g(v1; b)| < ε for all v1 in

[v, v̄]. This follows from the stronger claim: for every ε > 0 there exists δ (independent of v1, v2, h)

such that if |Γ(v1, v2;h)| ≤ δ, then there is a bv2 with Γ(v1, bv2;h) = 0 and |bv2 − v2| < ε. In fact, since

Γ is decreasing in v2, we will demonstrate the still stronger claim that for every ε > 0 there exists

δ > 0 such that if Γ(v1, v2;h) > 0 and v2 < v̄ − ε, then Γ(v1, v2 + ε;h) ≤ Γ(v1, v2;h) − δ, while if

Γ(v1, v2;h) < 0 and v2 > v+ε, then Γ(v1, v2−ε;h) ≥ Γ(v1, v2;h)+δ. Since Γ is concave in v2, we only

need to demonstrate that for all ε > 0 there exists δ > 0, such that Γ(v1, v + ε;h) ≤ Γ(v1, v;h)− δ

uniformly in v1, h. Let

t(w) = R+
C2 −R
v̄ −R (w −R) if v = R

= C∗1 if v > R.

(so that either way, t(.) forms a lower bound on bidder 2’s strategy h(.)). Now

∂

∂v2
Γ(v1, v2;h) = −

ZZ
w1<h(w2)
w2<v2

dF̃ (w1, w2) ≤ −
ZZ

w1<t(w2)
w2<v2

dF̃ (w1, w2),

so that the partial derivative is negative for v2 > v and bounded away from zero, uniformly in v1

and h. Call the bound Q(v2). Define

δ = −
Z v+ε

v
Q(v2) dv2

Then Γ(v1, v + ε;h)− Γ(v1, v;h) ≤ −δ, and δ is independent of v1, v2, and h.

Given the above lemmas, theorem 5 follows by the Brouwer fixed point theorem.

9.4. Proof of Corollaries 7 and 8. Suppose the reserve price R > v. If a bidder’s valuation

of each object is below R, he will bid on neither. If a bidder has one object with valuation above R,

and one object with valuation below, he will bid on the higher valued object. Thus, without loss of
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generality, assume v1 > v2 > R. Suppose that when both of bidder 2’s valuations are above R, he uses

a partially coordinated strategy with critical value C. Then, in an auction with the no-excess-demand

stopping rule, bidder 1’s expected gain to cooperative bidding is

Γ(v1, v2;C) ≡
ZZ
max{w2,R}>w1

C>w1

(v1 −R)− (v1 −max{w1, R})+

−(v2 −max{w2, R})+ dF (w1) dF (w2) (16)

=
ZZ

w2>w1
C>w1>R

(v1 −R)− (v1 −w1)+ − (v2 −w2)+ dF (w1) dF (w2)

−F (R)
Z v2

R
F (w2) dw2 (17)

(again the additional argument of the function Γ emphasizes its dependence on C).

Lemma 10 (for S = {(w1, w2) ∈ [v1, v2]2|w2 > w1, C > w1 > R}), implies Γ(R,R;C) = 0, Γ is

concave in (v1, v2), non decreasing in v1, constant in v1 for v1 > C, and non increasing in v2. Because

of the final term in (17), we must expressly assume Γ(R,R;C) is increasing in R; then, by the same

logic as before, we can conclude that there is a partially coordinated equilibrium with critical value

C ∈ (R, v̄), if and only if

Γ(C,C;C) = 0, and Γ(v, v;C) is increasing in v at v = R (18)

and there is a fully coordinated equilibrium if and only if

Γ(v̄, v̄; v̄) ≥ 0, and Γ(v, v; v̄) is increasing in v at v = R. (19)

Now direct calculation establishes that for v in the interval [R,C]

Γ(v, v;C) =
1

2

Z v

R
2F (C)− F 2(C)− F 2(R)− 2F (r) dr.

Thus, a necessary condition for an equilibrium in partially coordinated strategies is

2F (C)− F 2(C)− F 2(R)− 2F (R) ≥ 0 (20)
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which will be violated for all C if F (R) ≥ √2 − 1. This proves a slightly stronger version of the

second claim of corollary 8.

To prove the first claim, suppose that, given R, there is a C∗ < v̄ such that

Γ(C∗, C∗;C∗) = 0

and

Γ(C,C;C) < 0 for all C ∈ (C∗, v̄].

Now

dΓ(C,C;C)

dR
= −1

2
[2F (C)− F 2(C)− F 2(R)− 2F (R)]−

Z C

R
F (r) dF (r)

= −F (C) + F 2(R)− F (R)

which by (20) is negative at C = C∗. Moreover, the expression is decreasing in C; thus Γ(C,C;C) is

a decreasing function of R for all C ≥ C∗, meaning that C∗ falls with increasing R.

In an auction with the no-price-increase stopping rule, bidder 1’s expected gain to cooperative

bidding is

ΓP (v1, v2;C) = Γ(v1, v2;C) + (v2 −R)F 2(R)

Suppose there is a partially coordinated equilibrium with critical value C∗ under the no-excess-

demand stopping rule. Then by (18) and (19), ΓP (C∗, C∗;C∗) > 0. In the no-price-increase stopping

rule auction a parallel analysis leads to the conditions for existence of coordinated and partially

cooridinated equilibria which correspond to (18) and (19), substituting ΓP for Γ. Since
d2ΓP (v,v,C)

dv dC > 0,

the no-price-increase conditions must be satisfied for some critical value greater than C∗, proving

Corollary 7.
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